Python library for evaluating validator responses using multiple scoring metrics including BLEU, ROUGE, and Shapley values with real blockchain data integration and MCP server for AI assistant integration.
$ valiscore mcp-server --network finney
MCP Server Started:
================================================================================
Server: ValiScore MCP Server
Network: finney
Available Tools: 8
Available Resources: 3
Status: Ready for AI assistant integration
Tools Available:
• score_responses - Score multiple responses
• analyze_subnet - Real subnet analysis
• compare_subnets - Multi-subnet comparison
• monitor_subnet - Real-time monitoring
• calculate_shapley - Fair contribution analysis
Real-time blockchain data analysis with industry-standard metrics and advanced fairness analysis
Model Context Protocol server for seamless AI assistant integration with real-time subnet analysis and scoring tools.
Connect directly to Bittensor networks (finney, test, local) for live validator analysis and performance tracking.
Industry-standard BLEU score for text similarity evaluation with smoothing functions for edge cases.
ROUGE-1, ROUGE-2, and ROUGE-L scoring for detailed text quality assessment.
Fair contribution assessment for multiple miners using game theory principles.
Command-line interface for subnet analysis, monitoring, and batch processing workflows.
Integrate ValiScore directly into your AI assistant workflows with the Model Context Protocol
Score responses, analyze subnets, monitor performance, and calculate Shapley values
Access subnet information, validator data, and analysis results as queryable resources
Connect to finney, test, or local Bittensor networks with real-time data
Customize network settings, authentication, and tool parameters
# Start MCP server
valiscore mcp-server --network finney
# Show available configuration
valiscore mcp-config-show
# Connect from your AI assistant
# Tools: score_responses, analyze_subnet, compare_subnets
# Resources: subnet_info, validator_data, analysis_results
Get started with ValiScore in minutes
git clone https://github.com/sonoran-softworks/valiscore.git
cd valiscore
pip install -e .
valiscore demo
Powerful analysis with minimal setup
# Analyze a real Bittensor subnet
valiscore analyze-subnet --subnet-id 1
# Compare multiple subnets
valiscore compare-subnets --subnet-ids 1,2,3
# Monitor subnet in real-time
valiscore monitor-subnet --subnet-id 1 --interval 60
from valiscore import ValidatorAnalyzer
analyzer = ValidatorAnalyzer(network="finney")
analysis = await analyzer.analyze_subnet(netuid=1)
print(f"Validators: {analysis['validator_count']}")
print(f"Average Performance: {analysis['average_performance']:.3f}")
# Start MCP server for AI assistant integration
valiscore mcp-server --network finney
# Show MCP configuration
valiscore mcp-config-show
# Available tools: score_responses, analyze_subnet,
# compare_subnets, monitor_subnet, calculate_shapley
Everything you need to get started with ValiScore
Learn how to integrate ValiScore with AI assistants using the MCP protocol.
MCP Guide